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Abstract 
 

This study investigates the extent of the contribution of the original GARCH model to our understanding of 
the stochastic process underlying exchange rate price changes, and examines if the movement of current 
research to GARCH type models exclusively is warranted. GARCH(1,1) parameters are calculated on a 
yearly basis and used to standardize the exchange rate price change data. Frequency distributions and 
statistical tests indicate that independence still exists after standardization. This indicates that GARCH type 
models alone are inadequate since all are similar in form, and would have difficulty in accounting for such 
independence. It could be argued that the poor performance of the GARCH model is due to the models 
incorrect assumption of a normal distribution. This argument is tested by comparing the GARCH 
standardized data with mean -variance standardized data, which makes no assumptions about the 
distributional form. Results of likelihood ratio tests, question the significance of conditional volatility, in 
explaining exchange rate price changes. Curiously there are cases where GARCH e2(t-1) parameters are 
significant when tests for first-order heteroskedasticity are not significant; this suggests that the model may 
be misspecified. Overall, results indicate that although previous research finds that volatility clustering plays 
a role in determining the stochastic process, it is not the dominate factor. This study questions the 
contribution of the GARCH type models. We discuss implications of our results. 

 
 

INTRODUCTION 
 

Recent empirical research relating to the probability distributions of daily spot exchange rate changes use 
dependent models, where variance is conditional. Studies have focused on ARCH-type, GARCH processes. These 
models propose that volatility varies over time and is persistent. Although these papers contribute to our 
understanding of the nature of volatility it has yet to be shown that these models improve our ability to describe 
exchange rate price changes. If volatility clustering is the primary factor in explaining daily exchange rate price 
changes, these models would be superior to any independent models and significant independence would not exist in 
the data after removing the ARCH/GARCH type effects. The ARCH/GARCH models are referred to as dependent 
models since they do not have independent random variables. An example of an independent model is a mixture of 
normals, since it assumes that the observations are independent random variables. 

The GARCH model is a more general case than the ARCH model. In their original form, a normal distribution is 
assumed, with a conditional variance that changes over time. For the ARCH model, the conditional variance changes 
over time as a function of past squared deviations from the mean. The GARCH processes variance changes over 
time as a function of past squared deviations from the mean and past variances. Formally, the GARCH model can be 
expressed as follows: 
 
Equation 1 
 

Y(t) = x(t)P + e(t) 
 
Equation 2 
 

e(t)� Φt-1 ~ N(0, σ2(t)) 
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Where the conditional information set at time t-1 is denoted Φt-1. The variance of the ARCH process exists when 

Σαi < 1 and is given by, Var(Y(t)) = α0 / (1 - Σαi). In this study Y(t) is equal to the change in log(S(t)), the log of the 
spot exchange rate. X(t) is a 1xk vector of lagged endogenous variables included in the information set. P is a kx1 
vector of unknown parameters. p and q are the order of the process. In this study a GARCH(1,1) model is used. 
Equation (3) reduces to: 
 
Equation 4 
 

σ2(t) = α0 + αie
2(t-1) + ßiσ2(t-1) 

 
Although the proper procedure to fit a GARCH model entails diagnostic checking in addition to estimation, We 

focus on the GARCH(1,1) due to the support found for this model in previous research. 
Recent studies have supported an ARCH/GARCH type process. Hsieh (1988) found highly significant 

autocorrelations for the squared residuals of daily data, but an ARCH(12) process accounts for most of the nonlinear 
stochastic dependencies found. Studies by Taylor (1986), McCurdy and Morgan (1988), and Kugler and Lenz 
(1990), find that the GARCH(1,1) model has a superior fit than the ARCH(12) model. 

Fujihara and Park (1990) used weekly futures price changes and spot price changes, to test the ARCH process, 
the compound normal process, the mixed jump diffusion process, and the Student t-distribution process. These 
generating processes assume independence, with the exception of the ARCH process. The results support the ARCH 
model for three out of the five currencies examined. 

Bollerslev and Ghysels (1996) propose using a periodic (P-ARCH(1,1), P-GARCH(1,1)) structure to formulate 
time series models for conditional heteroskedasticity to capture the repetitive seasonal time variation of the second 
order moments. Using Monte Carlo simulation, and an empirical example with the mark/pound exchange rate, they 
show a loss in efficiency when this periodic factor is ignored. 

Baillie, Bollerslev, and Mikkelson (1996) introduce the fractionally integrated generalized autoregressive 
conditional heteroskedastic (FIGARCH) processes. The influence of lagged squared innovations has a slow 
hyperbolic rate of decay which tends to zero for long lags. It has the resemblance to the fractionally integrated class 
of processes for the conditional means. It has similar flexibility in modeling the persistence of shocks to the 
conditional variance process. Using a daily time series of the German mark/ U.S. dollar exchange rate, they show 
that the FIGARCH(1,d,1) model is superior to both the GARCH(1,1) and the integrated GARCH(1,1) (IGARCH).1 
There are other forms of ARCH/GARCH processes, for a through review of ARCH/GARCH modeling in finance 
see Bollerslev, Chou and Kroner (1992). 

A problem with the majority of these studies is that independent models are not considered. We can not 
determine from these studies if the focus on modifications to the original ARCH/GARCH process are a positive 
step. Therefore the purpose of this study is to determine if the movement of current research to GARCH type models 
exclusively is warranted. We also examine if conditional volatility in the form of the original GARCH model is the 
primary factor in the attempt to determine the stochastic process underlying exchange rate price changes. These 
questions will be examined using two approaches. First, the GARCH effects will be removed by standardizing the 
data, using the GARCH model derived from maximum likelihood estimation. Tests of independence will then be 
conducted on this standardized data. If a GARCH(1,1) process is the appropriate process underlying exchange rate 
price changes, removal of these effects will result in a single normal distribution, suggesting that independent 
models do not need to be considered in future research. 

In our second approach, the GARCH standardized data will be compared to mean-variance standardized data to 
determine if GARCH standardization is an improvement over the most naive alternative. Again, if the GARCH(1,1) 
model is the appropriate process, it’s standardized estimates should result in a series of observations that fit a one 
normal distribution better than the data that has been standardized by using just the mean and variance of the 
observations. 

There are many specifications for the GARCH model, all are not examined here. But if independence still exists 
after standardization, and mean-variance standardization is found to be superior, this puts most GARCH type models 
into question since all are similar in form, being dependent models with conditional variance. 
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METHODOLOGY 
 

The objective of determining the stochastic process underlying daily exchange rate price changes is to allow 
development of better exchange rate pricing models. Empirical evidence indicates that parameters for the models 
shift over time (See Johnston, and Scott (1999)), therefore it is more appropriate to calculate model parameters on a 
yearly basis than over long time horizons as in previous research. Accurate descriptions of the short term 
distributions would allow for development of improved exchange rate pricing models. In this study, the parameters 
of the GARCH(1,1) model are calculated on a yearly basis, using maximum likelihood estimation (IMSL subroutine 
DNCONG). The estimated parameters for that year and the previous year are used to standardize the data. This way, 
both in sample and out of sample are tested. 

By standardizing the data with the mean and the conditional variance of the GARCH model, the GARCH effects 
are eliminated from the data. 

Maximum likelihood estimation is then conducted on this standardized data examining one normal, and a 
mixture of two normals. Two normals are examined, to determine if independence still exists in the data. Once the 
maximum likelihood parameter estimates are obtained, the standardized data is assigned to one of the two normals 
based on a maximum likelihood approach. The classification rule is to select the distribution j for each observation t 
that has the largest posterior probability, that is: 
 
Equation 5 
 

MaxjΓjp(S(t))� (αj,σ²j) 
 

Where Γj is the sample proportion of the total observations from distribution j, and p(S(t)/(αj,σ²j)) is a normal 
density function with αj mean and variance σ²j. 

Frequency distributions are calculated for the raw data, and the standardized GARCH(1,1) data. The data is also 
standardized by using the annual, and previous years mean and variance. The maximum likelihood approach 
discussed above is applied. They are calculated to determine if the GARCH model frequency distributions are an 
improvement over the raw data’s and the most naive standardization alternative. 

Standardization will bring in the tails of the overall data distribution. If it significantly removes the impact of the 
second normal distribution, which could be described as the jump distribution (due to abnormal information), then 
independent models are not the direction to go in future research. If independence is still indicated then the 
movement of the research to purely dependent models is inappropriate. 

With the standardized data assigned to the two normal distributions, the hypothesis that the two groups of 
observations have identical distributions can be tested, using the Kolomogorov-Smirnov statistic, hence test for 
independence. If we find that the standardized GARCH data has a mixture of two normal distributions, although it 
says nothing about the validity of the conditional variance component of the GARCH model, it does question the 
validity of the GARCH class of models since these models have difficulty in accounting for such independence. 

Likelihood ratio tests are conducted on the maximum likelihood estimates for the normal distributions from the 
mean-variance, and GARCH standardized data. The exact data sample in each case is not the same since we are 
standardizing with different parameters. The likelihood ratio test is still appropriate, the raw data is the same in 
every test and the standardization can be thought of as different restrictions put on the model. The likelihood ratio 
test is 2(Lmv - Lg), where Lg is the GARCH standardized maximum log likelihood estimates and Lmv is the mean-
variance standardized maximum log likelihood estimates. This test has a X2 distribution with k degrees of freedom 
where k is the number of restrictions being tested. One would naturally speculate that if the GARCH coefficients are 
significant, then the likelihood value of the GARCH standardized data would be larger than that of a constant mean 
and variance standardized data. Findings to the contrary, again question the validity of the GARCH model. 
 
 

DATA 
 

The exchange rate data consists of the daily closing spot prices for the British pound, Canadian dollar, German 
mark, and Japanese yen versus the U.S. dollar from the Chicago Mercantile Exchange for the years 1978 to 1987, 
and from the Merrill Lynch debt markets group’s fixed income research data base for the years 1988 to 1992. The 
daily series represents changes between business days with no adjustment for holidays. 
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RESULTS 
 

Table 1 shows the yearly significance of the GARCH(1,1) parameters. Both GARCH(1,1) conditional variance 
parameters are significant in only 17 of the possible 60 cases. The Canadian dollar is the only currency where there 
is 5 years of consecutive data with both GARCH parameters significant (84,85,86,87,88). The study will focus on 
this Canadian data since it gives the GARCH model the highest probability of success.2 
 
 

TABLE 1 
Yearly Significance of the GARCH(1,1) Parameters 

(1987-1992) 
 

  
None 

e2
t-1 

only 
σσ2

t-1 
only 

Both 
Parameters 

Years Both 
Parameters Significant 

British 5 4 3 3 79,80,92 

Canada 4 2 1 8 78,82,84,85,86,87,88,90 

German 7 3 1 4 80,83,85,87 

Japan 7 2 4 2 79,84 

Total 23 11 9 17  

 
 
 

Table 2 reports the results of first order heteroskedasticity tests for each year where the GARCH parameters are 
significant. Lagrange multiplier (LM) test and the Portmanteua Q-test, test statistics are used to test for first order 
heteroskedasticity. Out of the 17 cases where both GARCH(1,1) conditional variance parameters are significant, 
there are 7 cases where the tests for first order heteroskedasticity are insignificant. There is no first order 
heteroskedasticity found in British 92, Canada 82, 87, 88, 90, and German 80, 87 data. 

Casual empiricism might suggest that the elimination of heteroskedasticity may be due to GARCH-type models 
being used in practice, making the market more efficient and removing the heteroskedasticity. The problem with this 
line of reasoning is that if the use of the GARCH models removed the first-order heteroskedasticity, the e2(t-1) 
parameters of the GARCH(1,1) models should no longer be significant in these periods. What is this GARCH model 
first-order parameter explaining if there is no first-order heteroskedasticity? They may be picking up higher order 
heteroskedasticity, if that is the case the models used here are misspecified. It could be argued that GARCH effects 
exist in the data, but outliers are causing the tests for first-order heteroskedasticity to be insignificant. The question 
then becomes why do outliers play a more significant role in the tests for first order heteroskedasticity than they do 
in the GARCH modeling process. It could be caused by differing assumptions between the two tests and the model. 
The original GARCH model assumes a normal distribution with conditional variance that changes over time. The 
LM and Q statistics are computed from OLS residuals assuming the disturbances are white noise. The Q and LM 
statistics have an approximate X2 distribution under the white noise hypothesis. The X2 distribution is skewed 
positively but as the degrees of freedom increases it approaches the shape of a normal distribution. Since our degrees 
of freedom in both tests are over 200, we believe that it is not the assumptions that are causing the differences found 
between the tests for first-order heteroskedasticity and the significance of the parameter for e2(t-1) in the 
GARCH(1,1) model. 

Until these questions are answered and we are confident the GARCH models are explaining what they are 
theoretically designed to, the movement to more complex GARCH type models is premature. 

Table 3 reports the sample statistics for the Canadian overall and standardized data. The mean and standard 
deviations increase with standardization. The standardized data now measures how many standard deviations a data 
point is from the mean, the data has been scaled. The skewness and kurtosis is larger in each case for the 2nd normal 
distribution, which is expected, the 2nd normal is picking up the outliers. The kurtosis of the data reduces 
significantly when the data is separated into 2 distributions. The skewness increases with standardization for all 
cases (overall, normal 1, and normal 2). Again, this is due to the standardization or scaling of the data. Also shown 
are the results of the normality tests for the various distributions. The Shapiro - Wilk W statistic is used.3 These  
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TABLE 2 
First Order Heteroskedasticity Tests 

In Years Where both Conditional Variance 
Parameters are Significant 

(1987-1992) 
 

 Q Prob>Q LM Prob>LM 

British     
   1979 7.8986* .0049 7.8991* .0049 
   1980 17.2327* .0001 17.0225* .0001 
   1992 .0059 .9388 .0079 .9291 

Canada          
   1978 19.1527* .0001 18.9096* .0001 
   1982 .1539 .6948 .1599 .6892 
   1984 43.1682* .0001 42.7215* .0001 
   1985 58.8913* .0001 58.2389* .0001 
   1986 17.5788* .0001 17.4217* .0001 
   1987 1.8059 .1790 1.7875 .1812 
   1988 1.9495 .1626 1.9405 .1636 
   1990 .8144 .3668 .8048 .3697 

German     
   1980 2.3866 .1224 2.3757 .1232 
   1983 8.7477* .0031 8.5565* .0034 
   1985 2.9727* .0847 2.9706* .0848 
   1987 2.2630 .1325 2.2882 .1304 

Japan     
   1979 4.2382* .0395 4.1350* .0420 
   1984 25.2111 .0001 25.0247 .0001 

*Significant for alpha < .1 
Q= Portmanteau Q-test 
LM = Lagrange multiplier test 

 
 
results indicate that the distributions are not normally distributed. The hypothesis that the data comes from a normal 
distribution is rejected in all cases at the .01 level of significance. Therefore, the non-normality found in independent 
models is not caused by a failure to take into account the GARCH like dependence. When the data is standardized 
by the GARCH model, the resulting distributions fail the normality test. It could be argued that any evidence found 
in this study against the GARCH models, results from the GARCH model’s incorrect assumption of a normal 
distribution. This argument can be tested by comparing the GARCH standardized data to the mean-variance 
standardized data. Even if the actual distribution is nonnormal as long as conditional volatility plays a significant 
role, the GARCH standardized data should fit a one normal distribution better than the mean-variance standardized 
data. The mean-variance standardized data is not making any assumptions about the distributional form. By 
definition the GARCH(1,1) standardized data comes from one normal. Therefore when we fit the GARCH 
standardized data to one normal distribution, it’s fit should be superior. Findings to the contrary put the significance 
of conditional variance into question regardless of the actual distributional form. 

Figures 1, 2,3, show the in sample frequency distributions for the Canadian raw data, Canadian mean-variance 
standardized data, and the Canadian GARCH standardized respectively.4 Frequency distributions before and after 
standardization indicate that independence exists in the data that can not be accounted for by the GARCH model. 
The second distribution still contains a significant number of data points in every case. Figure 3, the GARCH 
standardized second distribution contains 208 (17%) of all the data. 

Frequency distributions, are examined for all currencies (Overall, 2 normals) in 5 year intervals (1978-1982, 
1983-1987, 1988-1992). The results are similar to the Canadian 5 year interval in this study, two distinct 
distributions. This indicates that the conclusions drawn are not time period or currency specific. 



Journal of Financial and Strategic Decisions 18

TABLE 3 
Summary Statistics and Normality Tests for the Canadian 
Dollar. In Sample (1984-1988) Out of Sample (1985-1989) 

 

 Mean σσ  Skewness Kurtosis W:Normal Prob<W 

Unstandardized       

   Overall .000036 .003137 .01367 9.67571 .91728 .0001 
    (n = 1254)       
   Normal 1 .000083 .001887 .01759 -.01768 .97806 .0001 
    (n = 1137)       
   Normal 2 -.000420 .008437 .16362 -.38936 .92897 .0001 
    (n = 117)       

Mean-Var Standardized       

   A) In SampleOverall -.001070 1.00263 -.02503 8.16449 .91527 .0001 
    (n = 1254)       
   Normal 1 .021001 .75500 .01999 .67674 .97527 .0001 
    (n = 1216)       
   Normal 2 -.707380 3.84656 .54413 -1.21197 .85514 .0001 
    (n = 38)       

   B) Out of Sample Overall .018377 1.06299 .06394 16.52215 .90365 .0001 
    (n = 1262)       
   Normal 1 .050389 .46405 -.05096 -.82319 .96057 .0001 
    (n = 987)       
   Normal 2 -.096520 2.09962 .19782 2.98018 .94523 .0001 
    (n = 275)       

GARCH Standardized       

   A) In SampleOverall -.04781 .93335 -.45789 4.20539 .95616 .0001 
    (n = 1254)       
   Normal 1 -.15480 .55912 -.47021 -.04963 .94855 .0001 
    (n = 1046)       
   Normal 2 .49023 1.82928 -1.13502 .66715 .81764 .0001 
    (n = 208)       

   B) Out of SampleOverall -.01503 .96195 -.46103 6.86617 .95187 .0001 
    (n = 1262)       
   Normal 1 .01440 .78948 .10449 .36920 .98163 .0001 
    (n = 1235)       
   Normal 2 -1.36135 3.65710 .69843 -.79363 .84439 .0001 
    (n = 27)       

*Significant at the .01 level 
 
 

Table 4 reports the results of the independence tests. To test for independence we use the non-parametric 
Kolomogorov-Smirnov statistic. This allows to test for independence without assuming any specific distributional 
form. The null hypothesis is that the two groups of observations have identical distributions. The test statistic is: 
 
Equation 6 
 

D = Maxt|F1(xt) - F2(xt)| 
 

Where F1(xt) is the observed cumulative relative frequency for the tth data value from distribution 1 and F2(xt) is 
the observed cumulative frequency for the tth data value from distribution 2. If D is greater than its critical value, the 
null hypothesis is rejected, thus supporting independence. 
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FIGURE 1 
Frequency Distributions 
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Unstandardized Data
Canada Normal 1 in Sample (1984 - 1988)
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Unstandardized Data
Canada Normal 2 in Sample (1984 - 1988)
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Sample Sizes:        Overall = 1254        Normal 1 = 1137        Normal 2 = 117 
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FIGURE 2 
Frequency Distributions 
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Mean-Var Standardized
Canada Normal 1 in Sample (1984 - 1988)
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Mean-Var Standardized
Canada Normal 2 in Sample (1984 - 1988)
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Sample Sizes:        Overall = 1254        Normal 1 = 1216        Normal 2 = 38 
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FIGURE 3 
Frequency Distributions 
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GARCH Standardized
Canada Overall in Sample (1984 - 1988)
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GARCH Standardized
Canada Normal 2 in Sample (1984 - 1988)
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Sample Sizes:        Overall = 1254        Normal 1 = 1046        Normal 2 = 208 
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Table 4, Panel A examines the two distributions for each standardization method, the null hypothesis is rejected 
both in and out of sample. This indicates that the data in each case does not come from the same distribution, and 
independence still exists in the data. These results show that independence needs to be incorporated in the stochastic 
process underlying exchange rate price changes and that GARCH type models alone are inadequate. 

The Kolomogorov-Smirnov test is also used across standardization methods, Table 4, Panel B, to determine if 
the mean-variance standardized large distribution comes from the same distribution as the GARCH standardized 
large distribution. This is also done for the small distributions. Table 4 indicates that standardizing by different 
methods results in rejection of the null hypothesis for both the large and small distributions. Different 
standardization methods change the distributional form. The standardization methods result in significantly different 
distributions, therefore comparing these two series of observations will test the contribution of the conditional 
volatility since annual mean-variance standardization does not take into account conditional volatility. 
 
 

TABLE 4 
Non-Parametric Kolmogorov-Smirnov 

Test For the Canadian Dollar 
In Sample (1984-1988), Out of Sample (1985-1989) 

 
 

Panel A:  Ho: The 2 groups of observations have identical distributions. 
 

 D Critical Value of D 
  (α = .01) 
Mean-Var Standardized 
  In Sample .631578 .0460297 
  Out of Sample .545455 .0458836 
 
GARCH Standardized 
  In Sample .764423 .0460297 
  Out of Sample .703704 .0458836 

 

 
 

Panel B:  Ho: Large (small) distributions based on the different standardization 
 methods come from the same distributions. 
 

 D Critical Value of D 
  (α = .01) 
In Sample 
  Large .123097 .0327973 
  Small .521002 .1039250 
 
Out of Sample 
  Large .122060 .0343710 
  Small .634613 .0937780 

 

 

D is the test statistic for the non-parametric Kolmogorov-Smirnov test. It is given by: D = Maxt|F1(xt) - F2(xt)| 
where F1(xt) is the observed cumulative relative frequency for the tth data value from distribution 1 and F2(xt) is 
the observed cumulative frequency for the tth data value from distribution 2. If D is greater than its critical value, 
the null hypothesis is rejected, thus supporting independence. 

 
 

Table 5, Panel A presents the maximum likelihood estimation values, and the likelihood ratio tests comparing the 
GARCH standardized data with the mean-variance standardization data. In sample, both methods reduce the effect 
of outliers, one normal fits the data best using the Schwarz criteria (SC) to select the best fitting model. The Schwarz 
criterion (SC) controls for the degrees of freedom by giving more weight to models with fewer parameters. 
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Equation 7 
 

SC = log[L(x� Θ)] - klog(√N) 
 

Where L(x� Θ) is the value of the model’s maximized likelihood function, N is the sample size and k is the 
number of independent parameters in the model. 

For the raw data, consistent with previous research two normals is found to have a superior fit (not shown). Out 
of sample, mean-variance standardized data, two normals fits better, while one normal is again the best fitting model 
for the GARCH data. 

Although there may be some increased reduction in the influence of outliers using the GARCH model, one 
normal always fits best, the likelihood ratio tests (Table 5, Panel B) indicate that mean-variance standardization is 
superior to GARCH standardization. The null hypothesis that the mean-variance standardization is superior to 
GARCH is accepted in all cases both in and out of sample and for one and two normals. Given that the GARCH 
coefficients are significant, if volatility clustering plays a significant role, we would expect the maximum likelihood 
value of the GARCH standardized data to be superior to the maximum likelihood value of the mean-variance 
standardized data. These findings show that mean-variance standardization is superior to using the GARCH model, 
again our findings put into question the contribution of conditional variance in explaining exchange rate price 
changes. 
 
 

TABLE 5 
Maximum likelihood Results and 

Likelihood Ratio Tests, Canadian Dollar 
In Sample (1984-1988) Out of Sample (1985-1989) 

 
 

Panel A: Maximum Likelihood 
 

 In Sample Out of Sample 
 

 1 Normal 2 Normals 1 Normal 2 Normals 
 

GARCH Standardized 1603.13 1491.29 1652.07 1547.15 
  (SC) (1588.86) (1477.02) (1637.79) (1532.87) 
 

Mean-Var Standardized 1695.90 1536.47 1725.04 1814.75 
  (SC) (1688.77) (1518.63) (1717.90) (1796.90) 

 

 
 

Panel B: Likelihood Ratio Tests 
 

 In Sample Out of Sample 
 

 1 Normal 2 Normals 
 

In Sample 185.54* 90.36* 
Out of Sample 145.94* 535.20* 

 

 

SC = log[L(x� Θ)] - klog(√N) 
*Significant at the .01 level 

The likelihood ratio test is 2(Lmv - Lg), where Lg is the GARCH standardized maximum log likelihood estimates 
and Lmv is the mean-variance standardized maximum log likelihood estimates. This test has a X2 distribution with k 
degrees of freedom where k is the number of restrictions being tested. 

 
 
 

CONCLUSION 
 

In this study we examine the extent of the original GARCH models contribution to our understanding of the 
stochastic process underlying exchange rate changes, and determine if the movement of research to GARCH type 
models exclusively is warranted. 
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Overall results demonstrate that, although previous research indicates that volatility clustering plays a role in 
determining exchange rate price changes, it is not the primary factor generating these changes. GARCH models with 
normality assumptions do not provide a good description of exchange rate dynamics. Frequency distributions show 
independence still exists in the data after removing the GARCH effects. Likelihood ratio tests indicate that a simple 
alternative of using mean and variances to standardize the data is superior, to using the GARCH model. This study 
questions the contribution of GARCH type models, in the determination of the stochastic process underlying 
exchange rate price changes. 

Results indicate that in some years when both GARCH conditional variance parameters are significant, tests for 
first-order heteroskedasticity are insignificant. A question for future research is what are the GARCH model e2(t-1) 
parameters explaining if there is no first-order heteroskedasticity? 

This puzzle needs to be solved. When we are confident that the original GARCH model is explaining what it is 
theoretically designed to, we can move to more complex models. 

Future research can examine if other forms of the GARCH process can account for the independence found (i.e., 
PGARCH, GARCH, FIGARCH, GARCH). They should also be tested to determine if they are superior to mean-
variance standardization. Since all forms of the GARCH process are similar in form, focusing on volatility 
clustering, it would be interesting to see if they are an improvement. 
 
 
 

ENDNOTES 
 
1. The integrated GARCH model resembles ARIMA models for conditional first moments when obtaining optimal forecasts of 

the process. 

2. Similar results are found with the other exchange rates. 

3. Specification tests in the GARCH literature often are based on the residuals. Since the mean of the GARCH model is 
constant the use of the actual data in place of the residual would not affect results. 

4. Out of sample frequency distributions are almost identical and therefore not shown. 
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