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THE STATISTICAL DISTRIBUTION
OF DAILY EXCHANGE RATE PRICE CHANGES:

DEPENDENT VS INDEPENDENT MODELS

Ken Johnston* and Elton Scott**

Abstract

This study evaluates recently reported, conflicting, models for the probability distributions of daily exchange
rate price changes. The conflicting conclusions arise from differing data sets, noncomparable evaluation
criteria, and failures to directly compare the candidate models. This study evaluates the mixed jump diffusion
model, a discrete mixture of normals distribution model, and four alternative forms of the generalized
autoregressive conditional heteroscedastic (GARCH) model. We estimate parameters for each model using
maximum likelihood techniques; the goodness-of-fit for the models is measured using Schwarz’s criteria. In
contrast to some recently published results, none of our autoregressive conditional variance models
dominated the others; also none of these models consistently dominated the two models that assume returns
are independent. In the cases where there is significant first-order heteroscedasticity in the data set, the
GARCH models are superior only 50% of the time. In the most recent subperiod (Jan 88 - Dec 92) tests show
that for three of the four currencies the first-order heteroscedasticities are less pronounced than in prior
periods. Curiously, first-order GARCH parameters are significant in cases where tests for first-order
heteroscedasticity are not significant; this result suggests that our models may be misspecified. Results
indicate that independence should not be overlooked, and future research should not focus on the search for
the perfect GARCH model, but attempt to develop models that incorporate the pronounced volatility
clustering found in exchange rate price series and the independent behavior that exists in the data. These
conclusions are consistent with recent findings related to high frequency (intra-daily) returns.

INTRODUCTION

Researchers continue to seek theoretical probability distribution models that fit the empirical distributions of
changes in spot exchange rates. Better theoretical models of these empirical distributions should contribute to more
accurate pricing models for exchange rates and improved test statistics for such models.

For years researchers assumed that the empirical distribution of changes in exchange rates was best described by
either a normal or lognormal probability distribution. Indeed, some current studies and most current tests
“automatically” apply the logarithmic transformation to returns from spot, forward, and futures exchange rate
changes; this transformation assumes, explicitly or implicitly, that the transformed data produces returns that are
normally distributed. Recent empirical studies reject these assumed probability distributions; these studies do not
conclusively agree on any single alternative model. These studies usually support either the mixed jump diffusion
model, a discrete mixture of normal distributions(multinormal model), or some type of generalized autoregressive
conditional heteroscedastic (GARCH) model.

Boothe and Glassman (1987) evaluate four probability distributions which have been proposed to describe
exchange rate changes: the normal, the symmetric Stable Paretian, the Student t, and a mixture of normals. Their
results indicate that changes in logs of exchange rates have nonnormal distributions for daily data. The Student
distribution and the mixture of two normal distributions provide the best fits.

Tucker and Pond (1988) investigate four generating processes for daily exchange rate changes for six major
currencies (1980-1984). The four process are the scaled t-distribution, the general stable distribution, multinormal
distributions, and the mixed jump diffusion model. A series of pairwise comparisons favor the mixed jump model
                                                       
*Georgia Southern University
**Florida State University



Journal of Financial and Strategic Decisions40

for every currency tested. In a similar study Akgiray and Booth (1988), found that the mixed jump diffusion model
was superior to both discrete mixtures of normal distributions and stable distributions.

Hsieh (1988) found highly significant autocorrelations for the squared residuals of daily data, but an ARCH(12)
process accounts for most of the nonlinear stochastic dependencies found. Studies by Taylor (1986), McCurdy and
Morgan (1988), and Kugler and Lenz (1990), find that the GARCH(1,1) model has a superior fit than the ARCH(12)
model.

Fujihara and Park (1990) test the ARCH model, a multinormal model, the mixed jump diffusion model, and the
Student t-distribution model. Their results support the ARCH model for three out of the five currencies examined.
Fujihara and Park's results, unlike previous results, reject the mixed jump diffusion model as the best fitting model
among the models that assume independence. For a through review of ARCH/GARCH modeling in finance see
Bollerslev, Chou and Kroner (1992).

Baillie, Bollerslev, and Mikkelson (1996) introduce the fractionally integrated generalized autoregressive
conditional heteroscedastic (FIGARCH) processes. They report that the influence of lagged squared innovations has
a slow hyperbolic rate of decay which tends to zero for long lags. They note that this process resembles the
fractionally integrated class of processes for conditional means, with similar flexibility in modeling the persistence
of shocks to the conditional variance process. Using daily time series of the German Mark/ U.S. dollar exchange
rate, they show that the FIGARCH(1,d,1) model is superior to both the GARCH(1,1) and the integrated GARCH
(IGARCH(1,1)).

Bollerslev and Ghysels (1996) propose periodic conditional heteroscedastic structure (P-ARCH(1,1), P-
GARCH(1,1)) to formulate time series models that capture the repetitive seasonal time variation of the second order
moments. They show a loss in efficiency when this periodic factor is ignored.

Although our study is not the first study to examine “in a horse race” whether dependent models describe the
data better than independent models. This study is important for several reasons. First, prior research comparing
dependent and independent models tested only the dependent ARCH model. In that study the ARCH model is found
not to dominate the independent models. The current literature using daily data, post 1990, have focused exclusively
on refinements to the dependent GARCH model. Since these models have not been compared to independent models
we do not know if the recent movement of research to these purely dependent models is appropriate. This question
needs to be addressed since recent research using intra-daily data suggests that although the volatility process may
exhibit long-run dependance, significant independence exist in the data (Anderson and Bollerslev (1997))1.

In this study we evaluate the GARCH(1,1), GARCH-M(1,1), EGARCH(1,1), IGARCH(1,1)2,mixed jump
diffusion and a mixture of 2 normals so as to directly compare alternative dependent vs an independent model.

All variations of the GARCH model are not examined here (For example, P-GARCH and FIGARCH). We focus
on the GARCH models that are used the most frequently in the literature when examining financial price series.
Also, since variations of the GARCH type models that are not represented in this study have similar forms to the
dependent model variations used in this study, the GARCH models examined should adequately represent
alternative, similar dependent-form models.

Although proper procedure to fit a GARCH model entails diagnostic checking in addition to estimation we focus
on the GARCH(1,1) type processes due to support found for these type of models in previous research.

If shocks persist in the conditional variance process sequential variance will be influenced by such shocks, so as
to produce clusters. If return distributions depend on past returns, the GARCH models should dominate the
independent models. If variance clustering does not commonly occur, the mixture of normals model or the mixed
jump diffusion model will provide a better fit to the data. If we do find that the independent models have a superior
fit than the GARCH processes, this would indicate that significant independence exists in the data, and show that the
recent movement of the research to purely dependent models is inappropriate.

Another problem with past research is that no common single conventional test criteria is used. Studies have used
the Schwarz criteria (SC), Akaike information criteria (AIC), mean square error, correlation integral-based tests,
Lung box test, logarithmic loss functions and several others.

To compare models the Schwarz criteria is used in this study. Monte Carlo simulations have been conducted
showing the accuracy of this criteria for exchange rate data (For example, see Tucker and Pond (1988) and Akgiray
and Booth (1988)). Simulations have not been conducted for the other methods, and to date, no studies have
compared agreements or disagreements for these many alternative criteria. Also, when comparing the AIC and SC,
the SC has superior large sample properties. As sample size approaches infinity the SC criteria is asymptotically
consistent, whereas the AIC is biased towards selecting an overparameterized model.

Prior studies that examine GARCH type process do not include tests for heteroskedasticity. Therefore we do not
know if these models are picking up what they are theoretically designed to. We include tests for hereoskedasticity
to examine this question.
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Below, we describe the general features of the alternative models and the goodness-of-fit criteria. The specific
functional forms of the models used in this study follow that discussion. Section III describes the data, estimation
techniques, and evaluation criteria. The final section summarizes our results and offers conclusions.

BACKGROUND ON THE PROBABILITY DISTRIBUTION MODELS

If changes in exchange rates are generated by the mixed jump diffusion process, the variance of the primary
process doesn’t change but the process generates infrequent nonlocal jumps with large variances. Most research on
the mixed jump diffusion model assumes that the jumps are independent and have a identical normal distribution. In
this case, the mixed jump diffusion model is just a special case of a multinormal model where the Poisson process
determines when parameters change.

The discrete mixture of normals model assumes that exchange rate changes are normally distributed at any point
in time but the underlying parameters of the normal distributions are assumed to shift over time. With the
multinormal model, the mean can change, the variance can change, or both can change. In general although the
mean, the variance and the number of distributions are unrestricted, most prior applications of this model assume
that the returns are independent. The GARCH model assumes a normal distribution,3 with a conditional variance
that changes over time as a function of past squared deviations from the mean and as a function of past variances.
The GARCH models are also multinormal models with some very specific restrictions. However, most applications
of the GARCH model assume a constant mean, with variances that can be functions of past squared deviations from
the mean and past variances as well. Since the variance of GARCH model is conditional and the mean is constant, it
is a highly restrictive multinormal model4. Depending on the parameters in the conditional variance equations of the
GARCH models, the data can come from up to n normal distributions, where n is the sample size. It should be noted
that conditional variance of a GARCH model depends on previous residuals and GARCH models do not belong to a
fixed member of the normal distribution family.

CANDIDATE PROCESSES

Discrete Mixtures of Normal Distribution

Models based on discrete mixtures of normal distributions allow for shifts in parameter values amongst N
possible sets of parameter values. Kon (1984) provides a through discussion of discrete mixture of normal
distributions. McFarland, Pettit, and Sung (1982) and So (1987) strongly support this model as a basis for the
observed day-of-the-week effects.

The empirical distribution for the changes in spot exchange rates can be described using a discrete mixture of
normals distribution. With this distribution, each outcome for changes in the spot exchange rate at t, (S(t)) has a
normal distribution; these normal distributions occur with probability pi (I = 1, . . . K), where p1 + p2 + . . . + pK = 1.

The probability density function for S(t) is:

Equation 1

f(S(t) | Θ) = ∑
=
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K
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2
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where the parameter vector is Θ = (p1, . . ., pK, µ1, . . ., µK, σ1², . . ., σK²) and the normal density function for the ith

distribution is given by Ni(S(t) | µi, σi²). The mean and the variance of S(t) are given by:

Equation 2
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Equation 3
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Mixed Diffusion Jump

Merton (1976) developed a mixed jump diffusion model which explicitly admits jumps in the underlying
generating process. Here, we modify Merton's model to apply to exchange rate variations so that the arrival of
ordinary information produces exchange rate changes that follow a lognormal diffusion process (geometric
Brownian motion). Abnormal information is presumed to be generated by a Poisson process that produces iid
normally distributed jumps in exchange rate changes. The sample paths of this process can be described by the
following stochastic differential equation:

Equation 4

dS(t)/S(t) = αdt + σdB(t) + JtdP(t)

where S(t) = the spot exchange rate at time t, α = the instantaneous conditional expected rate of return per unit time
for the Brownian motion part of the process, σ = the instantaneous conditional standard deviation of the Brownian
motion part of the process, B(t) = standard Brownian motion, Jt = a normal random variable with mean µJ and
variance σ2

J representing the logarithm of one plus the percentage change in the price of the Poisson jump at time t,
This variable measures the size of the Poisson jump at time t, P(t)= is an independent Poisson process with intensity
parameter τ > 0, thus, τdt is the probability that a jump will occur in the interval (t, t + dt). The probability density
function of x(t) = log[S(t) / S(t-1)] is:

Equation 5

f(x(t) | Θ) = ∑
∞

=

τ− σ+σµ+µτ
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where µ = α − .5σ2 and N( ) is the normal density function, with parameter vector Θ = (µ, σ2, τ, µj, σ2
J). Moments of

all orders exist. The mean of the distribution is given by:

Equation 6

E(X) = µ + τµJ

and the variance is:

Equation 7

Var(X) = σ2 + τ(σ2
J + µ2

J)

Generalized Autoregressive Conditional Heteroscedastic (GARCH)

The GARCH model of Bollerslev (1986) allows for the conditional variance to depend upon past information
and therefore vary over time. It allows for a more flexible lag structure than the ARCH model of Engle (1982). In
the GARCH model the conditional variance is predicted by past forecast errors and past variances. Formally, the
model can be expressed as follows:

Equation 8

Y(t) = x(t)P + e(t)

Equation 9

e(t) | Φt-1 ~ N(0, σ2(t))

Equation 10

σ2(t) = α0 + ∑∑
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where the conditional information set at time t-1 is denoted Φt-1. In this study Y(t) is equal to the change in log(S(t)),
the log of the spot exchange rate. X(t) is a 1×k vector of lagged endogenous variables included in the information
set. P is a k×1 vector of unknown parameters.

Generalized Autoregressive Conditional
Heteroscedastic in the Mean (GARCH-M)

In the GARCH-M model the conditional mean is a function of the conditional variance equation. In finance this
model may be an improvement over the GARCH model because it is suited to account for the risk-return
relationship, where increased returns are expected with increased risk. The GARCH-M(q,p) model can be expressed
using the GARCH equations (9) and (10) but replacing equation (8) with:

Equation 11

Y(t) = x(t)P + Kσ2(t) + e(t)

where K= parameter for the conditional mean part of the process.

Exponential Generalized Autoregressive
Conditional Heteroscedastic (EGARCH)

The EGARCH model of Nelson (1991), has no restrictions on parameters whereas the GARCH model imposes
nonnegativity constraints on the parameters α and β. σ2(t) is an asymmetric function of past errors as defined by
equations (8), (9), and (12):

Equation 12

ln(σ2(t)) = α0 + ∑ ∑
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−σβ+−α
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where g(z(t)) = uz(t) + β[|z(t)| - E|z(t)|] and z(t) = e(t)/σ(t). Equation (12) is similar to an unrestricted ARMA(p,q)
model for the log of σ2(t). If αiu < 0, the variance will rise (fall) when e(t−1) is negative (positive). If z(t) is assumed
to be i.i.d normal, e(t) is variance stationary provided all the roots of the autoregressive polynomial (B) = 1 lie
outside the unit circle.

Integrated Generalized Autoregressive
Conditional Heteroscedastic (IGARCH)

The integrated in variance, or IGARCH model, modifies the GARCH model to incorporate an approximate unit
root in the variance equation, α1 + . . . + αp + β1 + . . . + βq = 1. The IGARCH resembles the ARIMA class of models
for conditional first moments.

DATA, ESTIMATION TECHNIQUES AND EVALUATION CRITERIA

Daily closing spot price data for the U.S. dollar versus British pound, Canadian dollar, German mark, and
Japanese yen were obtained from the Chicago Mercantile Exchange Yearbook for 1978 to 1987, and from the
Merrill Lynch debt markets group's fixed income research data base for the years 1988 to 1992. The daily series
(n=3817) represents changes between business days with no adjustments for holidays. The data set was split into
five year intervals to retest all models to evaluate the stability of probability models, over changing time periods;
either the form of the model or the parameter values for a selected model form could change over time.

Estimates for each of the candidate models are based on maximum likelihood methods. In this study we use the
IMSL subroutine (DNCONG). The Schwarz criteria is used to evaluate the models. This criteria uses Bayesian
approach, where, based on the likelihood values and the prior probabilities the model with the greater posterior
probability is selected. With unknown prior probabilities, one cannot calculate posterior probabilities, so the
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posterior probabilities must be approximated. Schwarz (1978) provides a simple and accurate approximation for this
criterion. This method assumes equal prior probabilities for the candidate models. The Schwarz criterion (SC)
includes an adjustment for the degrees of freedom that depends on both the number of parameters and the sample
size.

Equation 13

SC = log[L(x|Θ)] − klog( N )

where L(x|Θ) is the value of the model's maximized likelihood function, N is the sample size and k is the number of
independent parameters in the model.

The model that maximizes the SC value provides the best fit, since it is the model that has the highest likelihood
value while controlling for the number of parameters in the model and the sample size. For large samples these
approximations are good, but for arbitrary finite samples unless the exact form of the prior probability distribution of
the parameter vector Θ is known it is not possible to check the accuracy of the SC approximation. Prior research
conducts simulations, based on known parameters. They indicate that the Schwarz criteria accurately approximates
true measure of fit for daily changes in exchange rates.

RESULTS AND CONCLUSION

Table 1 reports the summary statistics for the sample data. For most currencies, the means for the three five year
subperiods shift. On the other hand, variances appear relatively stable for all four currencies.

Table 1 also reports test statistics for autocorrelation and heteroscedasticity. With three exceptions, the Durbin
Watson test statistics indicate no autocorrelation at the .10 significance level. The three exceptions are the British
pound, Canadian dollar and the German mark in the 3rd subperiod (Jan 88 - Dec 92). Lagrange multiplier (LM) test
and the Portmanteua Q-test, test statistics for heteroscedasticity, are also reported. The LM and Q statistics are
computed from the residuals of OLS, assuming a white-noise null hypothesis. The results on both LM statistics and
Q statistics indicate significant first-order heteroscedasticity for the overall sample for all currencies (Jan 78 - Dec
92). In the first subperiod (Jan 78 - Dec 82), only Japan had an insignificant value for LM and Q. In the second
subperiod (Jan 83 - Dec 87) again, all currencies have significant test statistics for first-order heteroscedasticity. For
the last subperiod (Jan 88 - Dec 92) only the British pound has insignificant test statistics for heteroscedasticity.

Given significant heteroscedasticity the dependent-type GARCH models that can account for the changing
variances would presumably provide a better fit than the independent-type models. Given a constant variance, the
independent models (the mixed jump diffusion model or the discrete mixture of normals model) should fit the data
better.

Tables 2 and 3 present each models daily maximum likelihood values, and Schwarz criteria; Table 4 summarizes
the results. For the twelve five year subperiods, ten subperiods have p-values < .1, in the test for significant
heteroscedasticity. GARCH type models are superior to the independent models in only 5 of the ten cases. For four
of the five remaining significant cases the mixed jump diffusion model has the best fit. The mixture of 2 normals
also dominates all GARCH models in these instances. For the overall period all four currencies have significant
heteroscedasticity, yet two of the four currencies have outcomes that are best described by an independent model.
Thus, although the data has significant heteroscedasticity in most cases, half the time, exchange rate changes are
best fit by models that assume the outcomes are independent. For the two cases where the variance appears stable, a
mixed jump diffusion model and a mixture of two normals model provide best fits for the data.

An interesting result occurs with the two cases where variance is stable, British Jan 88 - Dec 92, and Japanese
Jan 78 - Dec 82 subperiods. Casual empiricism might suggest that the elimination of heteroscedasticity is due to
GARCH-type models being used in practice, making the market more efficient and removing the heteroscedasticity.
The problem with this line of reasoning is that if the use of the GARCH models removed the first-order
heteroscedasticity, the parameters of the various GARCH(1,1) models should no longer be significant in these
periods. All parameters except the conditional mean in the GARCH(1,1)-M model are found to be significant in
periods where there is no first-order heteroscedasticity.

A question for future research is what are the GARCH models first-order parameters explaining if there is no
first-order heteroscedasticity? They may be picking up higher order heteroscedasticity, if that is the case the models
used here are misspecified. It could be argued that GARCH effects do exist in the data, but outliers are causing the
tests for first order heteroscedasticity to be insignificant. The question then becomes why do the outliers play a more
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significant role in the tests for first order heteroscedasticity than they do in the GARCH modeling process? It could
be caused by differing assumptions between the two tests and the models. The original GARCH model assumes a
normal distribution with conditional variance that changes over time. The LM and Q statistics are computed from
OLS residuals assuming the disturbances are white noise. The Q and LM statistics have an approximate X2

distribution under the white noise hypothesis. The X2 distribution is skewed positively but as the degrees of freedom
increases it approaches the shape of a normal distribution. Since our degrees of freedom in both tests are over 1,000,
we believe that it is not the assumptions that are causing the differences found between the tests for first-order
heteroscedasticity and the GARCH(1,1) type models.

Until these questions are answered the movement to more complex models, is premature.
Table 4 shows that neither the type of model (dependent or independent) nor the forms of the model type persist

from one five year period to the next. The only exception being the Japanese yen which consistently has independent
models fit the best. Table 4 also indicates there is no consistency as to model type or form across the currencies
within any subperiod. Again, the independent form is the only exception in the Jan 88 - Dec 92 subperiod.

In the most recent subperiod (Jan 88 -Dec 92) tests show that for three of the four currencies first-order
heteroscedasticity becomes less pronounced, insignificant for one of the three. It will be interesting to see if this
trend continues in the future.

In summary, our results indicate that dependent GARCH models do not dominate the independent models. Since
independence is still indicated, the movement of current research, using daily data, to purely dependent models is
inappropriate. When heteroscedasticity is present in the data the GARCH type models are superior only half of the
time when compared to the mixed jump diffusion model or a mixture of two normals model. Much of the existing
research on the distribution of exchange rates suggests that high frequency data are not independent and identically
distributed. However, we conclude that models which assume independence should not be overlooked since existing
models of dependence do not dominate the alternatives which assume independence.

Future research should focus not on the search for the perfect GARCH model, but attempt to develop a model
that incorporates the pronounced volatility clustering found in exchange rate price series and the independent
behavior that obviously exists in some of the data.

TABLE 1
Summary Statistics for Three 5-year Subperiods and the Overall Period

Jan 78 - Dec 82 BP CD GM JY

Mean -.000152 -.000098 -.000113 .000012
Variance .000046 .000008 .000052 .000058
Durbin-Watson(DW) 2.05 2.11 2.10 2.07
Prob < DW .792 .978 .958 .907
Q 15.47* 186.19* 7.25* .98
Prob > Q .0001 .0001 .0071 .3229
LM 14.14* 185.73* 6.91* .86
Prob > LM .0002 .0001 .0086 .3493

Jan 83 - Dec 87 BP CD GM JY

Mean .000121 -.000041 .000331 .000525
Variance .000074 .000008 .000066 .000043
Durbin-Watson(DW) 2.11 2.10 2.16 2.10
Prob < DW .975 .954 .997 .958
Q 206.90* 201.61* 19.77* 26.74*
Prob > Q .0001 .0001 .0001 .0001
LM 206.49* 201.14* 19.75* 26.73*
Prob > LM .0001 .0001 .0001 .0001
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TABLE 1
Summary Statistics for Three 5-year Subperiods and the Overall Period

(Cont’d)

Jan 88 - Dec 92 BP CD GM JY

Mean -.000173 .000020 -.000022 -.000024
Variance .000059 .000007 .000056 .000043
Durbin-Watson(DW) 1.88* 1.86* 1.92* 1.95
Prob < DW .013 .006 .087 .166
Q .5162 11.46* 3.73* 3.38*
Prob > Q .4725 .0007 .0535 .0658
LM .5190 11.43* 3.70* 3.31*
Prob > LM .4713 .0007 .0544 .0587

Jan 78 - Dec 92 BP CD GM JY

Mean -.000070 -.000039 .000064 .000169
Variance .000059 .000007 .000058 .000048
Durbin-Watson(DW) 2.02 2.03 2.06 2.04
Prob < DW .686 .791 .973 .899
Q 363.02* 445.08* 29.79* 23.40*
Prob > Q .0001 .0001 .0001 .0001
LM 360.95* 444.70* 29.18* 23.09*
Prob > LM .0001 .0001 .0001 .0001

BP: British Pound, CD: Canadian Dollar, GM: German Mark, JY: Japanese Yen
*significant for alpha < .1

ENDNOTES

1. They model the independence in the form of heterogenous information arrivals.

2. Using a t-distribution in place of the assumed normal distribution did not change the conclusions of this study.

3. Baillie and Bollerslev (1989) have also examined a GARCH-t model which uses a t-distribution in place of a normal
distribution.

4. The ARCH-M model, introduced by Engel, Liben, and Robins (1987), allows the mean to shift, but as a function of the
conditional variance process.
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TABLE 2
Maximum Likelihood Results (Schwarz Criteria)
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Mixed Jump 4311.71
(4293.87)*

5832.77
(5814.93)

4292.89
(4275.05)

4622.58
(4604.74)*

Mixture of
2 Normals

4300.87
(4283.03)

5771.26
(5753.42)

4301.00
(4283.16)

4620.81
(4602.97)

BP: British Pound, CD: Canadian Dollar, GM: German Mark, JY: Japanese Yen
Table shows the log of the likelihood function and the Schwarz criteria()
*Largest Schwarz criteria for the period or subperiod

5. Baillie, R., Bollerslev, T., and Mikkelsen, H., "Fractionally Integrated Generalized Autoregressive Conditional
Heteroscedasticity," Journal of Econometrics, 1996, pp. 3-30.

6. Bollerslev, T., "Generalized Autoregressive Conditional Heteroscedasticity," Journal of Econometrics, 1986, pp. 307-327.

7. Bollerslev, T., Chou, R., and Kroner, K., "ARCH Modeling In Finance," Journal of Econometrics, 1992, pp. 5-59.

8. Bollerslev, T., and Ghysels, E., "Periodic Autoregressive Conditional Heteroscedasticity," Journal of Business and
Economic Statistics, 1996, pp. 139-151.



Journal of Financial and Strategic Decisions48

TABLE 3
Maximum Likelihood Results (Schwarz Criteria)

Daily Exchange Rate Data
Subperiod 2 and Overall

Jan 88 - Dec 92 BP CD GM JY

GARCH(1,1) 4540.85
(4526.51)

5965.40
(5951.06)

4557.82
(4543.48)

4722.38
(4708.04)

GARCH-M(1,1) 4542.80
(4524.88)

5966.05
(5948.13)

4558.04
(4540.12)

4722.38
(4704.46)

EGARCH(1,1) 4547.98
(4530.06)

5967.29
(5949.37)

4565.40
(4547.48)

4722.39
(4704.47)

IGARCH(1,1) 4533.69
(4519.35)

5963.10
(5948.76)

4551.78
(4537.44)

4705.22
(4690.88)

Mixed Jump 4570.67
(4552.74)

5987.26
(5969.34)*

4568.65
(4550.72)

4773.83
(4755.90)*

Mixture of
2 Normals

4579.13
(4561.20)*

5985.30
(5967.37)

4569.88
(4551.95)*

4766.85
(4748.92)

Jan 78 - Dec 92 BP CD GM JY

GARCH(1,1) 13383.91
(13367.42)

17502.45
(17485.96)

13412.46
(13395.97)

13662.28
(13645.79)

GARCH-M(1,1) 13384.81
(13364.19)

17503.24
(17482.62)

13412.68
(13392.06)

13644.25
(13643.63)

EGARCH(1,1) 13386.81
(13366.19)

17517.60
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(13405.06)*
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(13644.88)

IGARCH(1,1) 13386.98
(13370.49)
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(13386.89)
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Mixed Jump 13430.62
(13410.01)*
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(17439.71)

13368.73
(13346.11)

13768.66
(13748.04)*

Mixture of
2 Normals

13420.59
(13399.97)

17464.86
(17444.24)

13364.79
(13344.17)

13757.14
(13736.52)

BP: British Pound, CD: Canadian Dollar, GM: German Mark, JY: Japanese Yen
Table shows the log of the likelihood function and the Schwarz criteria()
*Largest Schwarz criteria for the period or subperiod
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TABLE 4
Association of Significant Autocorrelation;

Significant Heteroscedasticity, and Best-Fit Model Types

Number of Currencies With Significant (alpha < .1)

Period
First Order

Autocorrelation
First Order

Heteroscedasticity
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BP: British Pound, CD: Canadian Dollar, GM: German Mark, JY: Japanese Yen
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